Toxicity and biodegradation of ibuprofen by Bacillus thuringiensis B1(2015b)
نویسندگان
چکیده
In recent years, the increased intake of ibuprofen has resulted in the presence of the drug in the environment. This work presents results of a study on degradation of ibuprofen at 25 mg L-1 in the presence of glucose, as an additional carbon source by Bacillus thuringiensis B1(2015b). In the cometabolic system, the maximum specific growth rate of the bacterial strain was 0.07 ± 0.01 mg mL-1 h-1 and K sμ 0.27 ± 0.15 mg L-1. The maximum specific ibuprofen removal rate and the value of the half-saturation constant were q max = 0.24 ± 0.02 mg mL-1 h-1 and K s = 2.12 ± 0.56 mg L-1, respectively. It has been suggested that monooxygenase and catechol 1,2-dioxygenase are involved in ibuprofen degradation by B. thuringiensis B1(2015b). Toxicity studies showed that B. thuringiensis B1(2015b) is more resistant to ibuprofen than other tested organisms. The EC50 of ibuprofen on the B1 strain is 809.3 mg L-1, and it is 1.5 times higher than the value of the microbial toxic concentration (MTCavg). The obtained results indicate that B. thuringiensis B1(2015b) could be a useful tool in biodegradation/bioremediation processes.
منابع مشابه
Exploring the Degradation of Ibuprofen by Bacillus thuringiensis B1(2015b): The New Pathway and Factors Affecting Degradation.
Ibuprofen is one of the most often detected pollutants in the environment, particularly at landfill sites and in wastewaters. Contamination with pharmaceuticals is often accompanied by the presence of other compounds which may influence their degradation. This work describes the new degradation pathway of ibuprofen by Bacillus thuringiensis B1(2015b), focusing on enzymes engaged in this process...
متن کاملBacillus thuringiensis B1(2015b) is a Gram-Positive Bacteria Able to Degrade Naproxen and Ibuprofen
A Gram-positive bacterium, designated as strain B1(2015b), was isolated from the soil of the chemical factory "Organika-Azot" in Jaworzno, Poland. On the basis of 16S rRNA gene sequence analysis, the isolated strain was classified as a Bacillus thuringiensis species. Strain B1(2015b) is able to degrade ibuprofen and naproxen, however, these compounds are not sufficient carbon sources for this s...
متن کاملThe Synergist Effect of The Henna Plant, Lawsonia alba on Bacillus thuringiensis var. kurstaki Against Third Larval Instar of Pistachio Leaf Borer, Ocneria terebinthina Strg. (Lep.: Lymanteriidae)
Ocneria terebinthina Strg. (Lep.: Lymanteriidae) is a leaf borer pest in pistachio orchard. The toxicity of Bacillus thuringiensis var. kurstaki alone and in combination with henna powder was investigated on third larval instar of O. terebinthina under laboratory conditions. Bioassay was carried out using spray technique on pistachio offshoot. Probit analysis of concentration-mortality data was...
متن کاملInfluence of environmental factors on biodegradation of quinalphos by Bacillus thuringiensis
BACKGROUND The extensive and intensive uses of organophosphorus insecticide-quinalphos in agriculture, pose a health hazard to animals, humans, and environment because of its persistence in the soil and crops. However, there is no much information available on the biodegradation of quinalphos by the soil micro-organisms, which play a significant role in detoxifying pesticides in the environment...
متن کاملLaboratory Study of Microbial Insecticide Produced by the Bacteria Bacillus thuringiensis of Starch Factory Sewage for Biological Control of Larvae Culex pipiens
Background & Objective: Epidemic of dangerous diseases caused by Culex pipiens’ bites prompted us to focus on these groups of insects. Today, the most successful biological insecticides are produced by the bacteria of the genus Bacillus, which in the production phase of spores, makes crystalline endotoxin protein. This protein can be activated upon entering the insect’s intestine in alkali...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 24 شماره
صفحات -
تاریخ انتشار 2017